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Early mobilization is the key to timely storm restoration… 

With early prediction you can: 

• Identify needed resources 

– Get them called out and rolling 

– In time to travel to the area 

– And be there when the trouble starts  

• To get the feeders back up quickly 

– Restoring the most customers early 

– So you can find the taps that are out 

– And get working on the single no-lights 

• And communicate more accurately 

– To give advanced notice and initial ERTs 

– To customers, media, and governments 

– To instill confidence and show leadership  

 

 

 

       Storm Response Scenarios
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“If only I could have known I needed that many crews,  

I would have got them there right from the start” 
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…But ‘pulling the trigger’ can be difficult… 

Barriers to mobilization include: 

• Mobilization is expensive 

– Overtime for your own crews 

– Costs for contractors and foreign crews 

– Logistics costs (reservations, meals, etc. ) 

• Mutual assistance is not automatic 

– Other companies want you to be sure 

– ‘False alarms’ cause future problems 

– All companies in the area may have needs 

• Inadequate information causes indecision 

– Will the weather really be bad? 

– Will the damage be as bad as the weather? 

– Will we have resources standing idle?  

 

 

 

Before the storm, there is not enough information. 

After the storm, there is no shortage of second-guessers 

Uncertainty and inadequate information 

cause indecision and poor storm response 
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…So, better decision tools are needed 

Weather 

Damage 

prediction & 

assessment 

Uncertainties Decision tools 

Weather 

forecasts & 

assessments 

Time to 

complete 

restoration 

Restoration 

Time  

Estimator 

With better decision tools, emergency managers can more effectively 

‘pull the trigger’ to make and communicate mobilization decisions 

Damage and 

outages 

Resource 

requirements, 

availability & 

effectiveness 

Resource 

requirement 

prediction & 

tracking 
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Better decision tools are needed and available: 

• Weather models and measures 

– Utility-oriented forecast models 

– Ensemble forecasts for risk assessment 

– More detailed grid measurements 

• Storm mobilization models 

– Relate weather to damages/outages 

– Relate damage to resource requirements 

– Relate resource requirement, availability 

and effectiveness to initial and ongoing 

Estimated Restoration Times (ERTs) 
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Decision models can help both before and after the storm has hit 

Prediction models facilitate storm mobilization 

before the storm 

 Forecasters predict weather 

 Weather drives outages 

 Outages drive damage 

 Damage drives resources 

 Resources affect restoration time 

Similar tools help manage work and ERT’s 

during the storm 

 OMS and patrollers provide actual 

outages and damage 

 Resource model uses actual outage and 

damage data to estimate resources 

 Actual resources available versus 

resources needed drives estimated ERTs 

Weather 

prediction 

Outage 

prediction 

model 

Outage and 

damage 

assessment 

Before the storm During the storm 

Weather 

assessment 

Planned 

resources 
Actual 

resources 

Planned 

Restoration 

Time 

Estimated 

Restoration 

Time 

Resource requirement model 

Damage prediction model 

With a better way to predict the resources needed, valuable time early in 

the storm can be saved, reaping shorter overall restoration 
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Most bad weather can be somewhat predicted 

Outage-causing bad weather comes in various 

forms, all of which are at least partly predictable: 

– Hurricanes are visible days in advance,      

but their exact path is uncertain 

– Sustained high winds tend to be an areawide 

phenomenon, forecastable in advance,      

but ‘micro-bursts’ and tornadoes are 

unpredictable in force and location 

– Storm fronts, and their associated lightning, 

wind, and rain or snow, are forecastable,                 

but can vary in force and location 

– Ice storms are generally anticipated,           

but the exact accumulation and location vary 

– Heat waves are forecastable within the week 

but the impact on utilities depends on wind, 

cloud cover, humidity, and demand response 

 

Even though some aspects of weather are unpredictable, many weather 

events are very predictable and allow no excuse for not mobilizing 
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Developing relationships to outages begins with historical weather  

• Historical weather data is 

available online from NOAA: 

– Daily data for each month   

(the F6 report) can be found 

for  local offices by clicking on 

the national map at: 
www.weather.gov/climate/index.php 

 

• The locations with the most data 

are airports, e.g., 

– Chicago-O’Hare (ORD) 

– South Bend (SBN) 

– Charleston, WV (CRW) 

 

• The data include: 

– Temperature (Hi-Lo-Average) 

– Wind speed and direction 

– Precipitation 

– NOT lightning strokes 

New sources of historical weather data can be even more detailed in 

terms of time, place, and type of weather 
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NWS Storm Event records can supplement F6 data 

The National Weather 

Service has a special 

service as part of 

NOAA’s NCDC (National 

Climatic Data Center).  It 

produces an entry for all 

storm events, and can 

be searched by state, 

county, and date range. 

 

Typical data includes the 

wind speed for ‘Tstm 

(Thunderstorm) Wind’ 

events,  property 

damage, and text 

describing such things 

as ‘trees down’, ‘power 

lines down’, etc. 

 Event Record Details 

Event: Tstm Wind State: West Virginia 

Begin Date: 10 Jul 2003, 04:44:00 PM EST County: Kanawha   

Begin Location: Yeager Arpt (CRW)   

Begin LAT/LON: 38°22'N / 81°36'W   

End Date: 10 Jul 2003, 04:44:00 PM EST   

End Location: Yeager Arpt (CRW)   

End LAT/LON: 38°22'N / 81°36'W   

Magnitude: 50   

Fatalities: 0   

Injuries: 0   

Property Damage:  $ 0.0    

Crop Damage: $ 0.0    

Description: 

A potent squall line developed during the early afternoon across central Ohio, on 

southwest to central Kentucky. This was along a prefrontal surface boundary, and well 

out ahead of a strong cold front. The atmosphere warmed into the 80s with surface 

dew points in the 70 to 75 degree range. Additional thunderstorms formed into a 

broken west to east line across West Virginia, ahead of the squall line. This caused 

flooding problems. After 1500E, the squall line accelerated eastward, moving near 50 

mph. As a result of this event, a few more counties, such as Ritchie and Harrison, were 

added to FEMA's disaster declaration number 1474. This federal disaster was initiated 

during the month of June.   
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Lightning stroke data are available from the NLDN  

• Lightning stroke data are available from the National Lightning Detection Network in Tucson, AZ 

• Many companies have been using lightning stroke data for years  

• Data can be integrated with territory maps to get accurate counts of strokes by region 

• The maps shown are of Northern Illinois and Eastern Pennsylvania (Exelon territory).   

 

  

May 17, 2004: Strokes hitting ComEd territory: 11,300 May 18, 2004: Strokes hitting PECO territory: 737 
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Sustained wind speed tends to be a regional phenomenon 

Wind at O'Hare and at Philadelphia 2003-2004
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Gusts (5-sec) are closely related to sustained wind (2-min) 

Gusts are closely related to sustained wind

 Mar-Aug 2004
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Mountainous areas are less predictable than level plains 

Although Huntington is only  

50 mi W of CRW  

and Beckley is only   

50 mi SE of CRW,   

on the windiest days  

the sustained wind can differ by 

as much as 10-25 mph  

Wind in Southern WV
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 Because of the terrain around Charleston and Southern WV, the usual 

similarity of sustained wind at nearby locations is not as valid.  As a 

result, the model needed to use data from three locations: 

Charleston, Huntington, and Beckley 
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Significant terrain features can complicate weather patterns 

• The terrain of AEP’s 
Appalachian Power 
Co. in WV is quite 
different than other 
locations in AEP 
(and many other 
companies) 

• Wind does not just 
‘blow over’ the 
plains and hills as it 
would elsewhere, 
but is blocked and 
channeled by the 
mountains and 
valleys, creating 
very localized 
weather 

• Also, rain falls in 
abundance as 
clouds hit the 
mountains, creating 
flash floods as a 
major cause of 
outages 
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Lightning strokes drive lightning outages 
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How to translate NWS lightning language into strokes for the model 

This table can be used to input a stroke forecast into the model: 

NWS language                   Strokes per region to enter into the model 

   City A City B City C City D  

None         0            0 0 0                                  

Occasional        1,000 500 1,000 1,000  

Frequent     10,000 1,000 10,000 4,000  

Continuous   20,000 2,000 20,000 8,000  

 

When this is done, the model will use its assumptions about outages/stroke for each region to produce a forecast 

of lightning-caused outages as follows (note that the coefficients are about double those for the lightning-only 

outages, reflecting the other outages and even non-outage calls that tend to be related to events with heavy 

lightning):  

 

Outages/strokes  .0065 .035 .009 .009  

Projected Outages:   

Frequent  150 35 90 36 

Continuous  300 70 180 72 

 

 

 Lightning can usually be forecast, at least in order of magnitude, and 

that can help mobilize the right amount of resources for a storm. 
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Wind-caused outages are exponentially related to wind speed 

• There is an exponential relationship 

between wind speed and wind-

caused outages, e.g., 

– The step from 40 to 50 mph 

causes much more damage 

than from 20 to 30 mph 

• The relationship is significantly 

affected by three other variables: 

– There is a seasonal affect due 

to the loss of leaves on 

deciduous trees from   

November to March 

– The duration of the wind 

matters, starting with 

emphasizing 2-min sustained 

wind speed over 5-sec gusts,  

– And also how many days the 

high-wind conditions prevail 

 

Notes:  Outages are adjusted for lightning-caused outages, leaving 

only wind-caused and other.  Ice storms are also excluded for this 

part of the analysis.  ‘Equivalent wind’ adjusts the wind speed for 

seasonal effects and for extra duration, e.g., in winter, an actual 

wind speed of 35 mph is adjusted to an effective wind speed of 

about 31 mph, which produces half as many outages.  Also, in 

storms in which more than one day had high winds, the effective 

wind speed is increased accordingly. 
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 The non-linearity of the wind relationship, as well as the factors for 

seasonality and duration, are part of why utilities cannot rely solely on 

storm managers’ intuition and experience.  They need a model. 

City A 
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Similar relationships hold for different locations 

Charleston Wind-Caused Outages
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A storm mobilization model starts with the weather input… 

 As a storm approaches, forecasts can be entered into the model to drive 

the likely number of outages, amount of damage, and need for resources 

North 

South 

West 

Central 

Illustrative 
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…then calculates outages, damages, and person-hours needed…  

Based on the weather (and 

the historically-derived 

model parameters), the 

model estimates: 

• Outages – by type 

• Damages – by type of 

outage, since different 

damage types drive 

different resource 

requirements, e.g., wire-

down-type outage that 

requires repair, versus a 

blown fuse 

• Resources required to 

achieve a desired CAIDI 

(or you can work it the 

other way – tell it the 

resources you have and it 

will tell you what the 

restoration time will be) 

12/8/2006

Region Wind-  Caused

Lightning-

Caused Ice- Caused Total

South Bend 206 35 0 241

Canton 411 0 0 411

Tulsa 652 150 0 802

Charleston 718 36 0 754

Outages

12/8/2006

All

Region

Device 

Operated

Wire Down/ 

Structure 

Failure

Device 

Operated

Wire Down/ 

Structure 

Failure Outages

South Bend 119 67 34 21 241

Canton 185 123 62 41 411

Tulsa 408 216 110 67 802

Charleston 351 220 111 72 754

Primary Secondary/Service

Damages

12/8/2006

Region

Primary 

Line Service Tree Patroller

Wire 

Watcher Runner

South Bend 2134 279 1642 213 44 53

Canton 3789 524 3410 379 1812 95

Tulsa 7013 902 5131 701 5731 175

Charleston 6868 933 5887 687 151 172

Resource Hours Required - Total Storm

North 

South 

West 

Central 

North 
South 
West 
Central 

North 

South 

West 

Central 
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…to determine resources required or to predict restoration time 

• With the forecast of 
resources required, the 
storm manager can 
consider the model’s 
recommendation as an aid 
to his/her own judgment 

• For a given amount of 
resources, the model can 
provide an informed early 
estimate of the time 
required to restore service 

• As actual outages and 
damage assessments 
become known, they can 
be fed into the model for 
new estimates of resource 
requirements and 
expected restoration time 

12/8/2006

Region

Primary 

Line Service

Hours to 

Restore 

Primary

Hours to 

Restore 

Services

Primary 

CAIDI

Service 

CAIDI

Total 

CAIDI

South Bend 41 4 52.0 68.1 781 1021 782

Canton 87 9 43.6 60.2 653 903 655

Tulsa 100 10 70.1 90.2 1052 1353 1053

Charleston 171 17 40.2 54.6 602 818 604

Persons Per Day

 The model is a tool to be used to enhance judgment, not replace it.       It 

aids intuition and helps make the decision to ‘pull the trigger’ or not 

12/8/2006

Region

Primary 

Line Service

Hours to 

Restore 

Primary

Hours to 

Restore 

Services

Primary 

CAIDI

Service 

CAIDI

Total 

CAIDI

South Bend 90 9 23.7 31.0 356 465 356

Canton 160 16 23.7 32.7 355 491 356

Tulsa 296 30 23.7 30.5 355 457 356

Charleston 290 29 23.7 32.2 355 483 356

Persons Per Day

Model is used to determine resources needed for a given CAIDI: 

Or to predict CAIDI based on a given set of resources available: 

North 
South 
West 
Central 

North 
South 
West 
Central 
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Although the pace of restoration is proportional to outages… 

• The number of outages 

restored is generally 

proportional to the time 

elapsed, since it often 

takes the same amount 

of time to restore a 

feeder as to restore a 

small tap 

• By contrast, Customers 

Interrupted are restored 

in a non-linear fashion, 

because crews are 

dispatched first to 

outages that have a 

large number of 

customers interrupted 

Restoration Pace
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Note: This data is from City A’s 2003 storms, and, in percentage terms, is 

representative of the proportionality exhibited in other locations as well. 

The total time elapsed is the time required to restore 95% of the outages, 

since the definition of the ‘end’ of the storm can be confused with a regular 

day’s outages otherwise. 

 Halfway through the restoration, only half the outages are restored, 

depending on whether the company got a good start, etc. 
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…The restoration of customers interrupted is non-linear in time 
ComEd

Percent of Customers Without Power By Duration

 For selected 2004 Storms
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 Halfway through the restoration, much greater than 50 percent of 

customers are restored, because of prioritization of restoration 
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The model has been tested by ‘backcasting’ actual storms 

Storm Date/Time Weather Outages Duration 

Dates Peak(s) Wind Lightning Actual Predicted Actual Predicted 

Jul 27 10 PM 24 13,526 110 179 29 22 

Dec 5 10 PM 21 - 117 52 22 10 

Aug 26-27 4 PM 23 19,420 187 230 33 27 

Sep 22 2 PM 31 - 140 84 15 15 

May 11 10 PM 35 10,443 193 214 

 

32 29 

Jul 7-9 

 

 7th Noon 

8th Noon 

35 

 

42,555 518 503 55 59 

Nov 12-14 

 

12th Noon 

13th 5 PM 

46 

6 hrs 

- 610 411 55 70 

City A 2003 Storms 

Notes: Wind in mph, sustained.  Lightning in total strokes.  

 The model will not be as accurate as you would like,  

but using a model like this allows you to get better with each storm 
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A mobilization model can benefit from continuous improvement 

• Each new storm offers an opportunity to see 

how well the model fits, and to explore 

model enhancements and parameter 

changes if it does not 

• Typical enhancements might include: 

– More detailed weather data 

– More non-linearities and special factors 

• Like effect of rain-soaked soil 

– Measuring the effect of changes in 

restoration methods and practices 

– Better data collection on damages 

incurred, resources used, etc. 

• Like scientists, we advance best by 

“standing on the shoulders of others” 

 

 While storm managers will also benefit from practice, using a model like 

this will allow them to learn more and to pass it on to others 

Rachel Spicer standing on the shoulders of P. Barry 

Tomlinson in Miami, Florida at the Harvard Summer 

Workshop in Tropical Botany  
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Observations and Key Questions 

Observations 

• Surprisingly, most companies do not have very much 
sophistication in their decision support tools for storm 
mobilization – reliance on experience and judgment is typical 

• All the evidence in decision-making processes shows that 
better decisions are made when supported by sound, user-
friendly tools that enhance judgment without replacing it 

• With a flexible tool, each application can give rise to lessons 
learned that enhance the capability of both the tool and the 
users 

 

Key Questions 

• Could you make better decisions on storm mobilization with a 
mobilization model? 

• What would it take to put something like this in practice in your 
utility? 

 

 Doing the same thing over and over again does not lead to improvement. 

Measuring your decisions against a model allows learning and growth 

Questions? 

Dan O’Neill 
President and  

Managing Consultant  

 

O’Neill Management 

Consulting, LLC          

404-603-9226 

danoneill@oneillmc.com 


